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A neural network is called nonlinear if the introduction of new data into the 
synaptic efficacies has to be performed through a nonlinear operation. The 
original Hopfield model is linear, whereas, for instance, clipped synapses con- 
stitute a nonlinear model. Here a general theory is presented to obtain the 
statistical mechanics of a neural network with finitely many patterns and 
arbitrary (symmetric) nonlinearity. The problem is reduced to minimizing a 
free energy functional over all solutions of a fixed-point equation with synaptic 
kernel Q. The case of clipped synapses with bimodal and Gaussian probability 
distribution is analyzed in detail. To this end, a simple theory is developed 
that gives the spectrum of Q and thereby all the solutions that bifurcate from 
the high-temperature phase. 

KEY WORDS:  Neural networks; spin glasses; learning rules; clipped and 
other nonlinear synapses; synaptic kernel; spectral theory. 

1. INTRODUCTION 

1.1. Recollection As Collective Behavior 

One of the fascinating aspects of a neural network is its function as an 
associative memory with a surprising fault tolerance with respect to both 
input data errors and internal failures. This fault tolerance, which has also 
been implemented in electronic hardware, has attracted a great deal of 
attention. ~1-5) In contrast to previous work, it has been modeled as a collec- 
tive action of a large, densely interconnected network of (formal) neurons. 
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The basic idea (~) is to introduce an energy function or Hamiltonian 

HN = -- �89 ~ JijS(i) S( j )  (1.1) 
i , j  

with suitable, symmetric couplings Ju=Jj~, to model (6) the neurons by 
Ising spins S(i), 1 <~ i <~ N, and to endow the system with a Monte Carlo 
(or Glauber) dynamics. It then performs a downhill motion in the (free) 
energy landscape associated with HN. Since the Monte Carlo dynamics is a 
Markov process which converges to equilibrium (v) as time proceeds, the 
long-time behavior of the neural network is determined by the equilibrium 
statistical mechanics, i.e., the free energy and the ergodic components, (s) of 
the Ising spins system with Hamiltonian (1.1). 

For suitable Jo (see below) and at low enough temperature, the Ising 
spin system performs a phase transition, a collective phenomenon par 
excellence. Below the critical temperature, it then possesses several ergodic 
components (free energy valleys), some of which can be associated directly 
with the stored memories. So some of the stable points of the flow are 
related to the memories of the system and if mistakes are introduced in one 
or several digits of a specific memory, this will result in a point near to it 
but still in its basin of  attraetion. That is, the system functions as an 
associative memory. 

1.2. N o n l i n e a r i t y  and Local i ty  

Typically, a neuron is connected to about 103-104 other neurons and, 
though there is some long-range interaction, the dominant connectivity is 
to the numerous nearby cells. As a first and crude approximation to reality, 
we therefore assume a neural network to be fully interconnected. 

The patterns to be stored (9) in the synaptic couplings Jij are N-bit 
words {~i=; 1 <~i<~N}, which represent specific spin configurations. They 
are labeled by 1 <~ c~ ~ q, where, in the present paper, q is taken to be 
(essentially) finite. To facilitate the modeling, the ~i= are independent, iden- 
tically distributed random variables, which assume the values + 1 with 
equal probability. This assumption corresponds to optimal coding. (1) 

Hopfields' original choice was to put (~) 
q 

More generally, it is highly desirable to study models with (~~ 

J• = J N -  ~ 0(~"  {j) (1.3) 

4 Unless stated otherwise we will assume that J= 1. 
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for some synaptic function ~b. The original Hopfield model with couplings 
(1.2) has ~b(x)=x and is therefore called linear. The linearity greatly 
simplifies the ensuing analysis. 

Clipping, also proposed by Hopfield, (1~ is another example of (1.3). 
Clipped synapses have ~b(x)=sgn(x). This synaptic function, which is 
highly nonlinear, corresponds to the minimal amount of information that 
can be stored. In practical work it is of great interest. The point is that the 
original Hopfield model combines binary and analog data processing 
elements. A pattern presented to the network is given in a binary represen- 
tation, whereas the storing of this N-bit digital word via (1.2) needs an 
analog process. The advantage of the function ~b(x)= sgn(x) is that com- 
puting can be performed mainly through logical operations. This also 
greatly speeds up computer simulations. Another important reason for con- 
sidering this type of function is that it is far easier to implement in silicon 
versions than the original, linear synapses (1.2). In what follows we 
therefore analyze the case of clipped synapses in great detail. 

As we will see shortly, when studying forgetful memories, there are 
ample reasons to consider nonlinear models more general than (1.3). In so 
doing we will constantly bear in mind two general principles, locality and 
symmetry. It is hard to imagine that synapses need detailed global infor- 
mation on the patterns. In fact, the prescriptions (1.2) and (1.3) are local, 
i.e., a synapse connecting neurons i and j  needs only information on {i and 
{j, which is locally available to it. Moreover, both (1.2) and (1.3) are sym- 
metric in i and j. This is the reason behind the Hamiltonian formulation of 
the dynamics. Under these two assumptions, locality and symmetry, the 
most general synaptic interaction is given by (1~ 

Ju = N-1Q({i;  {J) (1.4) 

for some synaptic kernel Q(x; y ) =  Q(y; x) defined on Nqx ~q. Locality is 
extremely important in practical work; symmetry can be dispensed with. 

1.3.  O u t l i n e  and  S u m m a r y  

This paper and the following (Is) are devoted to a comprehensive study 
of nonlinear neural networks ~ la (1.3) and (1.4). The free energy of the 
model (1.l) with interaction (1.4) and arbitrary synaptic kernel Q is 
obtained in Section 2. The ~i are taken to be random vectors in ~q 
(q fixed), whose components need not necessarily be + 1. For the moment, 
the number of patterns q is finite. There are several reasons for studying the 
finite-q case in detail. First, since our aim is to isolate generic properties, it 
deserves attention in its own right, the more since the nonlinearity gives 
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rise to new phenomena as compared to the original Hopfield model/TM 
Second, one need not assume any restriction on either the synaptic kernel 
Q or the spins. Third, the case of extensively many patterns can be 
reduced/~~ to the previous, finite-q case by singling out finitely many 
patterns, taking advantage of the spectral theory developed in the present 
paper, and averaging over the remaining patterns through the replica 
method. 

To determine the ergodic components of the Hamiltonian (1.1) with 
the interaction (1.4), one has to solve a fixed-point equation of the form 

m(x) = tanh {fl f d#(y)Q(x; y) m(y)} (1.5) 

where/x is a measure on Rq which specifies the probability distribution of {. 
As usual, /7 is the inverse temperature. We note that m = 0 is always a 
solution to (1.5). It corresponds to a trivial (paramagnetic) state. Bifur- 
cations away from zero and associated with them a phase transition and 
new phases are determined by the spectrum of the integral operator in (1.5) 
with kernel Q(x; y). So it is important to resolve the associated spectral 
problem. In general this is highly nontrivial. 

Considerable progress is obtained if one becomes more specific. In 
Section 3 we return to neural networks with random binary input data and 
assume that the components ~i~ of the vectors {i are independent and -t- 1 
with equal probability. Then x and y in (1.5) have equal weight 2 q and 
range through { -  1, 1 }q, the corners of the (hyper)cube [ -  1, 1] q in Rq. 
Let ~q be the Abelian group generated by the q inversions x~ ~ - x ~ ,  
1 ~< c~ ~< q (we invert only one component), and let g be an element of %. 
The group Nq contains 2 q elements and g2 is the identity, whatever g. If for 
a l l x a n d y i n  { - 1 , 1 } q a n d f o r a l l g i n %  

Q(gx; gy) = Q(x; y) (1.6) 

then the spectral problem associated with (1.5) can be solved completely. 
This is done in Section 3. There it is proven that all Q belonging to the 
class (1.6) have the same eigenvectors vp, though the corresponding eigen-" 
values 2p may differ. The reason behind this remarkable property is that 
the corners of the (hyper)cube [ - 1 ,  1] q may be identified with the 
elements of the group Nq. Then the 2 q characters of ~q are the eigenvectors 
of Q. This is a distinguished set, which will be used throughout what 
follows. 

The class (1.6) comprises nearly all known models of a neural 
network. The point is that these have Q's of the form 

Q(x;y)---(J({x~y,; l < a ~ < q ) )  (1.7) 
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where, by abuse of notation, ~b({z~ }) may be, but need not be, a function of 
q variables z~. For instance, in (1.3), ~b(x) is a function of a single variable 
x and Q(x; y) = ~b(x- y). On the other hand, the synaptic function of most 
memories that forget (1't5-~7) is defined iteratively. One starts with ~b~(x)= 
q~(#~xly~) for some function ~b(x) of a single variable x and after q 
iterations ends up with a function ~bq of q variables, 

q~q({Xc~y=; l ~O~q})=O(~qXqyqq-~q_l({X~ye; l ~7<~q-- 1})) (1.8) 

One easily verifies that the function defined by (1.8) satisfies (1.6). In fact, 
we will show that (1.6) and (1.7) are equivalent. It is to be noted, though, 
that in solving this general type of model we exploit in an essential way the 
fact that all corners of [ - 1 ,  1] q have equal weight. 

In the present case the positive eigenvalues of Q determine the bifur- 
cations from m ( x ) - 0 .  The first solutions to (1.5) that branch off are 
associated with the largest positive eigenvalue )'max of Q. Under suitable 
conditions (see Section 3) they correspond to the q stored patterns. The 
bifurcation temperature T,., which is also critical, will be shown (~s) to be 
given by /~c2 q)'rnax = 1 or, equivalently, Tc= 2-q)'max �9 Let ~[ denote the 
second largest eigenvalue. The Hopfield model (1) has ~ = 0, but, in general, 
nonlinearity gives rise to a positive ~. New, originally unstable solutions 
bifurcate from zero at a temperature Tq=2-q~ and they become 
metastable soon thereafter. So one would like to minimize the fraction 
Tq/Tc = ~/)'max" In Section 3 it is shown that for clipped synapses with 
~b(x) = sgn(x) this fraction goes to zero at least as fast as q 1; in fact, as q-2 
for every other large q. 

In Section 4 we replace the bimodal distribution of the Ce~ by a 
Gaussian one, solve the spectral problem associated with ~b(x)=sgn(x) 
exactly, and prove that ~/)'m,~ oc q 2 as q becomes large. So in both cases 
one can find an extensive temperature range, namely 7"q < T < T~, where no 
other bifurcations have occurred than the ones related to the largest eigen- 
value )'max- Since the bimodal and Gaussian cases are typical represen- 
tatives of a discrete and a continuous probability distribution, respectively, 
the common features of their spectra suggest some universality. 

Finally, Section 5 comprises a discussion of our results and possible 
extensions. Among other things, we propose a two-stage simulated anneal- 
ing procedure that gives optimal retrieval. We also note that the number of 
patterns may increase with N, though rather slowly (q ~ In N). 

In the following paper (is) we study information retrieval and show 
how the present general considerations can be used to solve various models 
of a nonlinear neural network, how the associated bifurcation and stability 
analysis can be performed, which kind of pattern will dominate, and how 
forgetfulness of a memory can be interpreted. 
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2. S T A T I S T I C A L  M E C H A N I C S  OF N O N L I N E A R  
N E U R A L  N E T W O R K S  

In this section we determine the free energy of the Ising spin-glass 
Hamiltonian (1.1) with 

Jo=N 1Q({i; {j ) (2.1) 

for some function Q(x; y) = Q(y; x) on ~q x ~q. The ~i~ have fixed values, 
randomly chosen according to their distribution. They need not necessarily 
be _+ 1. The model (2.1) can be solved by using a simple large-deviations 
argument. For full details the reader is referred to Refs. 10 and 19. 

Let us suppose first that we had to solve a much simpler problem: 
Deriving the free energy 

-flf(fl) = lim N -11n tr exp(--flHN) (2.2) 
N ~ o o  

of the Curie Weiss Hamiltonian 

HN=--�89 N 1 S(i) =--~JNm u (2.3) 
i = 1  

without using the well-known linearization trick. (2~ The trace in (2.2) is a 
normalized one, i.e., for N spins it is 2-N times the usual trace, which is a 
sum over the 2 u Ising spin configurations. To evaluate it, we note that the 
whole expression depends on the magnetization m u. It therefore seems 
reasonable to take m u as a new "integration" variable with values between 
- 1  and 1. Suppose we had found the corresponding density, to be called 
@N(m). Then, as N--, ~ ,  

tr exP(�89 2) = dm ~N(m) exp[N(�89 (2.4) 
- - o o  

~N(m) is easily found. It is the fraction of the 2 N spin configurations that 
have magnetization m. Let mN(k) = N ~ [--  ( N -  k) + k]  = N -  ~ [ 2 k -  N] 
be the magnetization for ( N - k )  spins down and k spins up. Then 
k = �89 + m) and, by Stirling's formula, 

N 
~N(m)=2  N ( N ) = 2  N(�89  (2.5) 

where 

c*(m)=�89 +m)ln(l + m ) + ( 1 - m ) l n ( 1 - m ) ]  (2.6) 

if Iml ~< 1, and + oo elsewhere. 
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In fact, c*(m)  is the Legeffdre transform 

c*(m)  = s u p [ m t -  c(t)]  
t 

of the c-function 

c(t) = In tr e ts = lnl-cosh(t)] 

(2.7) 

(2.8) 

For n-vector or soft spins the combinatorial argument (2.5) does not work, 
but the final result still holds, in that ~ u ( m ) = e x p [ - - N c * ( m ) ] ,  where 
c*(m) is the Legendre transform of a slightly more complicated 
c-function.r This has interesting implications (to be reported elsewhere) if 
one replaces the step-function approximation of the voltage firing rate of a 
typical neuron by a smooth sigmoid. 

Combining (2.4) and (2.5), we can easily evaluate the free energy (2.2). 
We get, using a Laplace argument, 

-flf(fl) lim N 11 (,+vo = u ~  nJ_oo d m e x p { N [ � 8 9  

= suPF�89 2 - c*(m)] 
m 

(2.9) 

The supremum is realized for those m tha t satisfy the fixed-point equation 

~Jm = dc*(m)/dm = tanh l(m) ~ m = tanh(/~Jm) (2.10) 

We now return to our problem. 
Let us suppose first that the r have a discrete probability dis- 

tribution. Say, the vector r assumes, with probability pv, n different 
positions 7, where 7 denotes a q-vector. Now the index set ( 1 ~< i ~< N} may 
be divided (~~ into n disjoint subsets 

I v=  (i: ~i =7}  (2.11) 

whose sizes become deterministic (23) as N ~  o% 

N-1  II~1 = Pv (2.12) 

With each I v we associate a magnetization or order parameter 

m,t= II.~1-' ~ s(i) 
i~ l~ 

If 7 :A 7', then these order parameters are not directly correlated. 

(2.13) 
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Using (2.1), (2.12), and (2.13), we rewrite (1.1) in the form 

-flHu=�89 mv[pvQ(7;?') pv.]mv,-NQ(m ) (2.14) 

where m i s  a vector in ~n with components m v. We have to evaluate the 
trace of exp(--flHu). As before, it seems natural to take the m v as new 
integration variables in the limit N--* oe. Since they are not directly 
correlated (in fact, as integration variables they are independent) the 
corresponding density is 

and thus, by another Laplace argument, 

=sup[Q(m)-~p,rc*(m~,) ] (2.16) 
m ~ 

where c*(m) is defined by (2.6). 
The maximum in (2.16) is realized among the m that satisfy the fixed- 

point equation [cf. Eq. (2.10)] 

m,=tanh [ fl ~ Q(7; 7') p,,m,,]=-tanh(x,) (2.17) 

A fixed point m is stable, i.e., gives rise to a (local) maximum, if the second 
derivative of (2.16) is negative-definite. [We will always say that we 
"maximize" the free energy functional (2.16), though, of course, the free 
energyf(fl)  itself is minimized.] Using (2.14) and (2.17), we then find that 
the matrix with elements 

flpvQ(7; 7') p,,- pv6,,,( 1 - m2)--1 (2.18) 

should have negative eigenvalues only. 
Some comments are in order. An absolute maximum of (2.16) 

corresponds thermodynamically to a stable phase and a local maximum to 
a metastable phase, whereas a saddle point or a minimum is to be related 
to an unstable phase. This distinction is of particular relevance to the 
Monte Carlo dynamics: Once the system is in a stable or metastable phase, 
it will never get out in a finite amount of time (N-~ or). On the other 
hand, unstable phases are left at a finite speed. To see why this is so, we 
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look at (2.16) and (2.17) from a slightly different point of view. By (2.16), a 
maximum of the free energy functional corresponds to a minimum off(/3) 
itself. The asymptotic behavior of the Monte Carlo dynamics is determined 
by the structure of the ergodic components or, more loosely formulated, the 
free energy valleys. These are labeled by the solutions m r of the fixed-point 
equation (2.17) and their thermodynamic stability tells us that a valley is 
"really a valley," i.e., concave upward. So once the system is in it, it will 
never get out, since the barriers have a height proportional to N and 
N --* oo; cf. Ref. 24. 

As is shown in Section 2.3 of the following paper, ~18) for small enough 
/3 (high enough temperature), the only solution to (2.17) is m r = 0 for all 7. 
Let Q be the matrix with elements Q(7; 7') and P the diagonal matrix 
{pv}. Moreover, and in contrast to Ref. 10, where this quantity is called )~1, 
let Amax > 0 (if any) be the largest eigenvalue of QP. (One easily shows that 
the eigenvalues of QP coincide with the ones of p1/2Qp1/2, including mul- 
tiplicity; hence they are real.) One or several nontrivial solutions to (2.17) 
branch off into the direction of certain eigenvectors belonging to Area x and 
a phase transition occurs as T reaches Tc = Amax. 

The expression (2.16) may be simplified so as to avoid an explicit 
calculation of c*(m), the Legendre transform of c(t); cf. Eqs. (2.7) and 
(2.8). Using the fact that m = {mr} satisfies the fixed-point equation (2.17), 
one easily verifies, in the present case by explicit calculation, that c*(mr)= 
mrx ~ -c(xr) and thus 

-/3f(/3) = -�89 ~ mrprQ(7; 7') p~,m~, + ~ prc(xv) (2.19) 
YY' r 

where we take the solution(s) m of (2.17) that maximize(s) (2.19). This 
expression generally holds for any strictly convex and differentiable 
c-function.~19"25) 

What are the modifications needed for a continuous probability dis- 
tribution # of the ~'s? Simply reinterpret m r as a function m(7) or, more 
explicitly, m(x) on the probability space. Instead of (2.17) we now get 

m(x) = tanh [/3 f d#(y)Q(x;  y) m(y)]  (2.20) 

while 

-- �89 f f  d#(x) d/z(y) re(x) Q(x; y) m(y) (2.21) 

822/50/1 2-16 
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replaces (2.19). The proof C~9) only requires a mild regularity condition 
on  Q. 

In fact, the representation (2.20)-(2.21) holds for any probability dis- 
tribution of the {'s. For instance, specializing to the case of random binary 
input data, we get 

m(x) = tank [f12 q ~ Q ( x ; y ) m ( y ) ]  (2.22) 
y 

which is (2.17). Here x and y range through { -  1, 1 }q, the corners of the 
(hyper)cube [ - 1 ,  1] q, which all have equal weight 2-% 

3. SPECTRALTHEORY 

For a finite number q of stored patterns, Eq. (2.21) and the associated 
set of transcendental fixed-point equations (2.20) provide a complete, albeit 
implicit, description of the equilibrium statistical mechanics of a nonlinear 
neural network with arbitrary synaptic kernel Q(x; y). To study the perfor- 
mance of some particular model, its synaptic function ~b or, more generally, 
its kernel Q(x; y) has to be specified. 

In this section we concentrate on the case where the components ~i~ 
are independent and assume the values +1 with equal probability 
(bimodal distribution). The associated fixed-point equation (2.22) already 
indicates that our first task consists in solving the spectral problem for the 
2qx 2 q matrix Q(x, y), where x and y range through the corners cgq= 
{ -  1, 1 }q of the urfit hypercube [ - 1 ,  1] q. This is a formidable task, which 
has to be performed analytically, since 2q~>2048 for q~> 11, out of the 
reach of most computers. 

In Section 3.1 we present a general solution for a rather large class of 
Q's that satisfy a simple invariance condition. In Section 3.2 we study the 
properties of the eigenvalues in more detail, while in Section 3.3 we 
specialize to the important case of clipped synapses. 

3.1. General Theory 

Let (x)i denote the component x i of the vector x in ~q. Furthermore, 
let g~ be the inversion with respect to the coordinate axis c~. That is, g~x 
has the same coordinates as x except for (g~x)~ = -x~.  The q inversions g~ 
generate an Abelian group ~q with 2 q elements, to be denoted by g. Note 
that g2 is always the identity. We now show that all the Q's that satisfy the 
condition 

Q(g~x; g~y)= Q(x; y), l <~ ~ <~ q (3.1) 
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or, equivalently, 5 

Q(gx;  y) = Q(x; gy) (3.2) 

for all g in Nq, have a common set of eigenvectors, though the corre- 
sponding eigenvalues may, and in general will, be different. 

Through  the operat ion o defined by 

( x o y ) i = x i y  i, l<~i<<,q (3.3) 

the corners ~gq form an Abelian group themselves, with e = (1, 1,..., 1) as 
unit element. This group is also denoted by (gq. As in fgq, every element of 
(~q is its own inverse, i.e., x o x = e. In fac t ,  f#q and (~q are isomorphic,  

% ~ ( g q  (3.4) 

To  see this, note that  for each x there is a unique g in Nq such that  x = ge. 
Identify x and g. 

We now determine the 2 q characters of (gq. Let p be one of the 2 q 
subsets of { 1 ..... q } and let 

vp(• = ]q x, (3.5) 
i~p  

The empty product  (p = ~;~) is always one. Plainly, 

vp(xo y) = Vp(X) vo(y ) (3.6) 

so Vp is a character.  Moreover ,  

2 vp(x) vp,(x) = 2q6a.p, (3.7) 
x 

so the vp are or thogonal .  Finally, because of (3.6), (3.2), and the group 
proper ty  of (gq, they are eigenvectors of Q, 

Q(x; y) vp(y ) = ~ Q(xo e; y) vp(xo y) Vp(X) 
Y Y 

=[~y Q(e;xoy)vp(xoy)]Vp(X) 

= [~  Q(e; z) v~(z)] v,(x) 

= ,~p vp(x)  

5 To obtain (3.2) we have exploited the fact that here g2 ~ =g~. 

(3.8) 
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where 

2 o = ~  Q(e; x) vp(x) (3.9) 
x 

is an explicit representation of the eigenvalue 2p corresponding to the 
eigenvector v o. 

Stepping back for a first overview, we see that by virtue of (3.7) we 
have found all the 2 q characters of cgq, i.e., all its irreducible representations 
(which are bound to be one-dimensional, since the group is Abelian6). 
Whatever Q, as long as it obeys (3.1) or (3.2), it has the vp as eigenvectors. 
The eigenvalues, however, do depend on Q, as is evident from (3.9). 

It is time to harvest some corollaries. Quite a few eigenvalues 2 0 may 
vanish. If Q is odd (even) in the sense that 

Q(e; - x )  = _+Q(e; x) (3.10) 

where the minus sign stands for odd (and plus for even), then 2p = 0 for 
Ipl, the number of elements in p, being even (odd). This directly follows 
from (3.5), (3.9), and (3.10). 

We can also determine the most general form of the Q that satisfy 
(3.1) or (3.2). By the spectral theorem, 

Q(x; y ) = ~  2o2-qvp(X ) vo(y ) (3.11) 
P 

Here the 2 q comes from an additional normalization of the vp. Then, by 
virtue of (3.5), this may be rewritten 

Q(x; y) = ~b({x~y~; 1 ~<c~<q}) (3.12) 

for some function ~b: Nu ~ •; cf. (1.7). We only need its restriction to ego = 
{-1, 1}q. 

The representation (3.11) is not as uncommon as it looks. Take, for 
instance, 2 ~ 2 - q = c o  and )~o2-q=cl  for all p with one element (IP[ = 1) 
while 2p = 0 for ]Pl/> 2. Then an "evident" extension of (3.11) to ~q • ~q is 

q 

Q(x;y)=co+cl ~ x~y~=co+clx'y (3.13) 
o - - 1  

and we have regained the Hopfield model ( c1>0)  without (Co=0) or in 
combination with (Co<0) an antiferromagnetic background. Another 
interesting case, to which we now turn, is provided by Q(x; y) = ~b(x. y) for 
some function ~b(x) of a single variable x, as in (1.3). 

6 Mathematically, the characters constitute a complete set of eigenfunctions for the con- 
volution kernel k(xoy 1) on a compact Abelian group with Haar measure #. Here # is the 
normalized counting measure. 
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3.2. Proper t ies  of  Eigenvalues 

Scalar product models ~ la (1.3) allow for a particularly simple and 
explicit representation of the eigenvalues 2p. A scalar product model is 
defined by the condition that the synaptic kernel Q(x; y) be of the form 

Q(x; y) = ~b(x. y) (3.14) 

for some function ~b. In this case Eq. (3.9) may be written 

~'~ =S ~(e" x) vAx) 
x 

j = l  i e p  

Here we have used (3.5) and the definition of e = ( 1 ,  1,..., 1). Let us now 
take an arbitrary vector • from ~q and, given the index set p, let us denote 
by k (or l) the number of negative components of x with label inside (or 
outside) p. Then we get 

q 

x j = q - 2 ( k + l ) ,  l~ x i=  ( - 1 )  ~ (3.16) 
j - - 1  i e p  

and thus, by a simple combinatorial argument, 

,~= ~ ~ (_1)~ II q lpl O(q-2(k+l) )  (3.17) 
k = 0  l = 0  

Hence 2p only depends on the size IPl of the set p. This entails that, except 
for possible accidental degeneracies (see below), the multiplicity of 2p = 21o t 
is 

which is a property we wilt use repeatedly. 
As is evident from the explicit representation (3.17), the eigenvalues ,~p 

also depend on q. Let us denote this dependence by 2( 9 .  In Appendix A it is 
shown that 

2 1 q l +  I ~-- • } q l _  1 - -  421ql-2~ (3.18) 

whatever the synaptic function ql. The only proviso is that ~b should not 
depend on q. 
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Before turning to clipped synapses, we illustrate the use of (3.17) for 
three particular cases. First we take 

~b(x) = J sinh(~x) (3.19) 

where J and ~ will be specified shortly. Expressing sinh(x) in terms of 
exp(+x) ,  one easily can perform the sum in (3.17) so as to get 

2p = 21q I = 2 q -  I j  coshq(~)[tanhlPl(~) _ tanhlOl(_ ~)] (3.20) 

The largest eigenvalue is 21. It is q-fold degenerate. For even [P[ the 2p 
vanish, as they should by the parity argument associated with (3.10). We 
also see that if we want to fix Tc = 2 q21 q) for large q, we have to rescale J 
and ~ by putting J--.  J x /q  and ~--, ~/x/q. Then 

2 -q2~ u) = J coshq(~/x/~) [x /q  tanh(~/x/-q)] --' J~ exp(�89 (3.21) 

as q becomes large. The other (nonzero) 2-q2(oq), with [p[ r  1, converge to 
zero. This behavior is generic for scalar product models. (1~ 

The second example is provided by an even function, 

~b(x) = J cosh (~x )  (3.22) 

N o w  

2p  --  , ] ( q ) =  2 q 1 coshq(~)  [tanhlPl(() + tanhlPl(_ ~)] (3.23) 
- -  " ~ l p l  

For odd [p[ the 20 vanish, and the same scaling as before applies. The 
largest eigenvalue is 20. It is nondegenerate. The corresponding 
microscopic states are ferromagnetic and hence not suitable for storing 
patterns with magnetization zero. 

Finally, we turn to the Hopfield model. For this linear model, 
Q(x; y ) =  x . y  and there are at least three ways, direct and indirect, to 
obtain the eigenvalues and the corresponding eigenvectors of the synaptic 
kernel Q. First, we may use (3.17). It is, however, simpler and also more 
instructive to return to (3.9). One then easily verifies that 20 = 1 for all sets 
p with one element, i.e., [p[ = 1, and 2p = 0 for [p[ r  1. The very same result 
also follows from (3.13) with co=0.  In summary, for the Hopfield model 
the only nonzero eigenvalue is 21 = 1 and it is q-fold degenerate. As we will 
see later, (is) the q eigenvectors x~, 1 ~<c~ ~<q, correspond to the q stored 
patterns. 
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3.3. Clipped Synapses 

Clipping means that ~b(x)= sgn(x) or, equivalently, 

~b(x) = - 1  + 20(x)  (3.24) 

where 6)(x) is the Heaviside function: O(x)= 0 for x < 0, O(0)=  1/2 and 
O(x )=  1 for x > 0 .  Inserting (3.24) into (3.17), we obtain 

2p = . ~ ( q )  - -  _ _  2 q D  Ipl - -  Ip],O 

IP] q -  IPl 

+ 2 2  2 
k = O  l = 0  

(3.25) 

If q is odd, the argument of the Heaviside function in (3.25) never vanishes. 
If q is even, however, it does and this complicates to some extent the 
evaluation of the double sum in (3.25), since O(0)=  1/2. The details are 
given in Appendix B. Due to parity, only t h e  J,(o q) with IP[ odd are nonzero. 

If q is odd, we find 

21qi=2 E ( - 1 )  t 1( l~<[pl~<�89 ) (3.26) 
t=o 7 q - 1 ) - I  ' 

while the remaining eigenvalues follow from 

c _ 1 ~(q- ~ ) /2 • (q )  
= ,  , q + l  

][f q is even, then 

�89  (3.27) 

Ipl-I ( I p i ; l ) ( q + l - l p t )  
~(q)- 2 ( - 1 ) '  l ~ l p l ~ < l ( q + 2 )  (3.28) 
"~lpl - -  //\  �89 I ] '  

/ = 0  

while the "mirror terms" are given by 

l~(q ) __ (__l]q/2](q) �89 + 2) < Ipl ~<q-  1 (3.29) [p[ - -  " 1  " ~ q +  2 - -  ]p[ ,  

For not too large q, there is an alternative, rather efficient way of 
calculating the eigenvalues. The 2] q) can be obtained directly through (3.26) 
and (3.28) or also (3.17). The result is 

) ~ q )  = 

q - l )  
2 �89  ' if q i sodd  

2(�89 ), if q iseven 

(3.30) 
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Starting with /~q) ,  o n e  can evaluate the other 2}q I by using the recursion 
relation (3.18) and proceeding via a "Pascal triangle"; cf. Table I. 

The 2(fl ) vanish for even n. For n odd, their absolute value 
monotonically decreases with n as long as n<~�89 for odd q or 
n ~< �89 2) for even q; see Table I. Since /~q)  is positive, it is the largest 
eigenvalue. Its multiplicity is q, except for q = 4k + 1, where we get q + 1 
due to an accidental degeneracy: ~](4k + 1 ) _  ,] (4k +l) This follows from (3.27) "~1 - - ' ~ 4 k +  1 " 
and is illustrated by Table I. The underlying physics is discussed in 
Section 3 of the following paper. (18) 

For  future purposes we also have to calculate the second largest eigen- 
value, which was called ~ in the Introduction. Turning to Table I once 
again, we see that ~ may be found either at the low-Jp[ or at the high-lp[ 
end, or at both ends, of the relevant branch of the tree in the table. The 
fraction ~/21 is most easily calculated by using (3.18) and (3.30) once or 
twice. This then gives, provided q ~> 5, 

and 

3 
' ~ q )  = /~ (qq--) 4 - -  ,'~ ~q) if q = 4 k + l  (3.31) 

( q - - 2 ) ( q - - 4 )  

1 
/~(q) = - -  2~ q) if q = 4k + 3 (3.32) q - - 2  q - - 2  

3 
~(q)  = /~ (qq) /~]q) if q = 4 k  (3.33) 3-- ( q _  1)(q--3)  

1 
2~qq-) 1 = - - q -  1 )~]q) if q = 4 k + 2  (3.34) 

For small q we refer to Table I. The degeneracy corresponding to (3.31)- 
(3.34) is 

respectively. For  q = 4k and 4k + 1 we have an accidental degeneracy and 
~/2max ~ q 2 for large q, whereas for q = 4k + 2 and 4k + 3 we have no 
accidental degeneracy and ~/2ma x OC q 1 

In summary, for IP[ r 1, 

i~(q)/'](q) ~ 0 as q ~ ~ (3.36) {pl/ '~l 

The only, trivial, exception is provided by [p [ - -q - -4 k  + 1. The property 
(3.36) will turn out to be instrumental in proving (18) that for an extensive 
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temperature range below Tc and for q large the performance of the clipped 
synapses reduces to that of the (linear) Hopfield model with the same 
number of patterns, despite the clipping. Furthermore, it will be shown (is) 
that the q stored patterns are among the states that bifurcate from zero at 
T C = 2-q•1 . Other, new states branch off at a lower temperature Tq, with 
Tq/Tc = ~[/21, where ~ is the second largest eigenvalue. According to (3.31)- 
(3.34), the fraction Tq/T~ becomes negligibly small as q gets large. 

4. G A U S S I A N  D ISTRIBUT ION 

The fixed-point equation (2.20) and the expression for the free energy 
(2.21) hold for an arbitrary probability distribution # of the independent 
random vectors ~i. In the previous section we concentrated on the case 
where the components r 1 ~< ~ ~< q, are also independent, assuming the 
values _+ 1 with equal probability (bimodal distribution). In this section we 
exactly solve the spectral problem associated with (2.20) for a Gaussian 
distribution of the ~i,. Moreover, we take the synaptic function ~b to be 
clipped, i.e., ~b(x)= sgn(x). 

We want to determine the eigenvalues and eigenfunctions of the 
integral operator Q defined by 

(QqJ)(x) = fRq d/~(y) sgn(x �9 y) ~(y) (4.1) 

where 

1 -y~ d/.t(y) = ~,=,[q] ~ e x p  -~dy== (2x) -q/2 exp(- �89 2) dqy (4.2) 

is the rotational-invariant, Gaussian measure on ~q with mean zero and 
total mass one. Q operates on all functions that are square integrable with 
respect to # [i.e., L2~(~q)]. 

To solve the eigenvalue problem Q~O = 2~, we note that sgn(x, y ) =  
sgn(~" ~), where ~ and ~ are unit vectors parallel to x and y. In view of 
future applications we are only interested in eigenfunctions belonging to 
nonzero eigenvalues. Then ~ ( x ) = 2  l(Q~b)(x) only depends on ~, the 
direction of the vector x, and we can reduce the problem to the surface of 
the unit sphere in ~q. That is, we may rewrite (Q~O)(x)= ZqJ(x) in the form 

q,2e R2,2R  l]S o, ,sgn,  ,43, 
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Here dg2(~) denotes the Lebesgue measure on the unit sphere and the 
expression between square brackets equals (26~ 

�89 q/2 ) rc -q/2 = OO q ~ (4.4) 

Since ~Oq is the total area (26) of the unit sphere, COq 1 df2(~') is normalized to 
one, as was the original measure #. 

By virtue of (4.3) we are left with the spectral problem QO=2~, 
associated with the operator 

(OO) (~ )=f  ag2(~)sgn(~.~) ~(~) (4.5) 

on the unit sphere. The eigenvalues 2 of the original problem are related to 
,~ by 2=)~co] 1. The solution to (4.5) is given by the Funk-Hecke 
theorem. (26) For a given p = q - 2 ,  let Sn(~) be any of the (26) 

( n + p - 1 ) !  
h(n, p) = (2n + p) (4.6) 

p! n! 

surface harmonics of degree n. These are linearly independent harmonic 
polynomials of degree n of the q = p + 2 variables Xl, x2,..., Xq. Then the 
content of the Funk-Hecke theorem is that 

where 

and C~/2(x) is 
Since (26) 

f df2(~,) sgn(i  �9 ~) S,(~) = 5., S,(1) (4.7) 

(J) p + l  j l  dx sgn(x) Cp/2(x)(1 - -  X 2 )  p/2 1/2 (4.8) 
C p / 2 ( 1  ) _ 1 

a Gegenbauer polynomial (26) of degree n and order p/2. 

c ; ( -  x) = ( -  1)" C~(x) 

,~, vanishes for n = even. For odd n we proceed as follows. 
For v ~ 0 (here v = lp) there exists a useful relation (26) 

(4.9) 

C~(x) = ( - 2 )  n(1 - x 2)-v + 1/2 

with 

(2v)n d" 
(v+ 1/2), n ! d x  n (1-xZ)"+v-~/2 (4.i0) 

(a)o= 1, ( a ) n = a ( a +  1 ) - . . ( a + n -  1), n =  1, 2 . . . .  (4.11) 
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Using (4.10), we now can do the integration in (4.8). After some algebra we 
get 

COp+ 1 p ( p +  2n+  1) 1 

Cp/2(1) (p + n ) ( p  + n + 1) n 
Cq/2_1(0) (4.12) 

If n = even, C~ 1(0) vanishes, whereas for n = 2s + 1 (odd) we find 

V(v + s) 
c~s(o ) = ( -  1) ~ (4.13) 

V(s + 1) r(v) 

Note the alternating sign. 
Returning to the original eigenvalue problem, we then obtain, if n = 1 

(s=0),  

2, = Ogq , p(p + 3) [Cf/2(1)]_ 1 
O)q (p q'- 1)(p + 2) 

where C~/2(1) = p = q - 2. Moreover, as q ~ ~ ,  

Og q_ 1/O9q ~ ( q/2~ ) 1/2 

so that for large q we end up with 

(4.14) 

(4.15) 

1 (q+ 1"] 1 
21 (2n) 1/2 \q-'-'~l/ ql/2 (4.16) 

To fix Tc (see below), one therefore has to rescale J in (1.4) by putting 
j_...~ ql/Zj. According to (4.6), there are q independent surface harmonics of 
degree 1. 

The eigenvalue 23 is negative, but the ratio 25/21 is positive and easily 
determined to be, for large q, 

25 3(p + l l ) ( p + 2 )  2 
2--7 ~ (p + 3)2(p + 4)(p + 5)(p + 6) (4.17) 

so that 

25/21 oc q-2  (4.18) 

as q ~ o0, precisely as in Section 3.3, Eqs. (3.31) and (3.33). Moreover, one 
can show that 22,+ 1/21 a: ( - 1 ) "  q - ' ,  so that 25 is the second largest eigen- 
value. At Tc = 21J the q original patterns bifurcate from zero and at a 
lower temperature I"q = 25J other solutions, corresponding to 25, branch 
off. (18) Due to (4.18), we have Tq/Tc = 25/21 ~: q-2  as q becomes large. 
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The integral kernel s g n ( i ' ~ )  is invariant under the full orthogonal 
group in ~". At T,., determined by fl,.J21 = 1, this symmetry is broken, 
nontrivial solutions to (2.20) bifurcate away from zero, and we are left with 
the subgroup that leaves invariant a surface harmonic of degree 1. As 
already noted, there are q of them. Each is oriented along a coordinate 
axis. For instance, if q = 3, then one easily verifies, by taking suitable linear 
combinations of Y+1.1 and Yo,1, that xJr, x2/r, and xSr  are the three 
surface harmonics of degree 1. 

In contrast to the bimodal distribution of Section 3, a scalar multiple 
( 4 0 )  of a surface harmonic is not a solution to the fixed-point equation 
(2.20). At Tc we only get a bifurcation into the direction of one of the eigen- 
functions. Because they can be transformed into each other by the 
orthogonal group, we get in fact a whole "umbrella" of solutions that 
bifurcate from zero. As the temperature is lowered and fl-~ 0% the 
solutions that started as a surface harmonic converge to 

re(x) = sgn(x �9 ~) ,  1 ~< e ~< q (4.19) 

where ~ is the unit vector in the Cartesian c~ direction. These correspond to 
the microscopic spin configurations 

S(i) -- sgn(~i~ ), 1 ~< c~ ~< q (4.20) 

See Section 3, in particular Eq. (3.8), of the following paper. (~8) 
Because of the rotational invariance of the Gaussian distribution and 

therefore of the free energy functional (2.21), patterns may be transformed 
continuously into each other at hardly any cost of (free) energy. So there 
are no large free energy barriers between the ergodic components. The 
rotation we referred to is a global transformation, but so is the destruction 
of a pattern by noise. It therefore turns out that the Gaussian model is not 
suitable for storing data. In spite of that, it is extremely convenient to 
illustrate some general features of a neural network with clipped synapses 
and independent (unbiased) random patterns: 

l. There is a critical temperature T c proportional to the maximal 
eigenvalue 21. Hence Tc oc q-1/z. To fix T c, we have to rescale J [cf. (1.3)] 
by putting J--* ql/Zj. 

2. As q ~ 0% there exists a very large temperature range ]'q < T <  T,, 
where the original patterns are stable and no other metastable states have 
appeared yet, except for the ones associated with 21. Rescaling J does not 
alter the fraction Tq/Tc oc q-2. For the Gaussian distribution this fraction 
approaches zero as q-2 for all q, whereas for the bimodal distribution the 
same holds true for every other q; cf. (4,18) and (3.31)-(3.34). 
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5. D ISCUSSION 

For finitely many patterns and arbitrary synaptic kernel Q we have 
determined the equilibrium statistical mechanics which governs the 
asymptotic behavior of the nonlinear neural network associated with Q. In 
addition, a complete spectral theory has been given for all Q that satisfy 
the invariance condition (3.1). Taking advantage of these considerations, 
we show in the next paper/18) how information can be processed and 
retrieved in various specific models. The main idea is simple. 

The synaptic kernel Q is chosen in such a way that, when a critical 
temperature T c associated with its largest eigenvalue is reached, the q 
stored patterns bifurcate first. 7 Usually, they are the only stable states 
directly below To. As the temperature is lowered, more stable states, not 
quite resembling the original patterns, and with them more basins of 
attraction appear. These all function as "wastebaskets," into which a noisy 
or incomplete pattern may disappear as time proceeds. Though not wan- 
ted, they cannot be eliminated. In the Hopfield model, which is linear, these 
spurious states are directly related to the q stored patterns, but, as we will 
see, (18) a nonlinear model allows much more unwanted states which 
become stable at low temperatures--despite, or, better, just because of 
other desirable properties of the model. How can one get rid of this huge 
amount of unwanted states? 

Since we have a Monte Carlo dynamics, the solution is provided by a 
simple, two-stage procedure. In a temperature window just below Tc there 
are only q ergodic . ~s~ components, namely the ones associated with the q 
stored patterns. If we are given a noisy or incomplete pattern, we pick a 
temperature T in this window and let the Monte Carlo dynamics run for 
quite a while. Since there are no other basins of attraction than the ones 
associated with the q original patterns, it is to be expected that with a high 
probability the system converges to the right ergodic component. There are 
still too many errors, though, because of the thermal noise inherent to a 
high temperature. We therefore slowly cool the system down to T=0 .  
Because the ergodic components associated with the original patterns 
remain stable, there is no bifurcation, and, once the system is in the right 
component, it now must converge to the right pattern. That is, we have 
"recalled a memory" through a simulated annealing procedure which starts 
just below To. Of course, we have to pay a price: Slow cooling requires 
quite a bit of (computer) time. A cheaper way out (18) is possible, however, 
if one is willing to accept the spurious states associated with the q original 

7 Here it is implicitly assumed that the largest eigenvalue is (at least) q-fold degenerate. This 
degeneracy holds for all inner-product models; cf. (3.14) and (3.17). Weighted patterns or 
forgetful memories (Ref. 18, Section 6) do not have this degeneracy, however. 
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patterns. One then simply chooses a temperature above the one where the 
states associated with the second largest eigenvalue of Q bifurcate from 
zero. This temperature may be rather low (cf. Section 3.3), so that thermal 
noise is nearly eliminated. 

Do the considerations of Section 2 also apply when q increases with 
N? To answer this question, we return to (2.12) and see that the answer is 
yes as long as (2.12), i.e., the strong law of large numbers for the size of the 
sets (2.11), holds. There are n = 2 q sets of about equal size (27) and each of 
them should contain (.0(N) sites. Hence q < log2(N) will do. If one requires 
the solution to be exact, this is as far as general theory can go. 

APPENDIX A 

In this Appendix we prove the recursion relation (3.18), 

21pal+ , = 21ql_, -421~,L~ (A.1) 

for the eigenvalues (3.17), 

)~Igl = 2 ~ ( - 1 )  k ~ ( q - 2 ( k + / ) )  (A.2) 
k ~ O  1=0  

of scalar product models with arbitrary synaptic function ~b. As yet, ~b does 
not depend on q. To simplify the notation, in what follows we write n for 
Ipl, and as a rule do not explicitly specify the ranges of the various sum- 
mations, taking them, as in (A.2), to be extended over those subsets of 2[ 
where the binomial coefficients do not vanish. Then, using the recursion 
relation 

for the binomial coefficients, we obtain 

k l 

- - n - - ]  + ( k ~ : ) } ( q  l )~b(q-2(k+l)) (A.4) 
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The sums corresponding to the first terms in the braces in (A.4) cancel and 
we get, introducing shifted summation variables for the remaining terms, 

)~(n q) - - / ~ ( q )  = 2 ~  ( - 1 ) ~ ( n - 1 ) ( q - n - l )  1 .+~ k 7 (b(q-2-2(k+T)) 
k T k / x ,  / 

k T 

, l ~b(q - 2 - 2(~ + l)) 

~ z ~ ~ b ( q - 4 - 2 ( ~ + l ) )  

(A.5) 

The second and the last sum in (A.5) cancel, the first and the third give 
equal contributions, so that we are left with 

~'}q)-I - -  )~(q)n+l = 4 ~ ( - 1 ) ~ ( n - 1 ) ( q - 2 1 ( n - 1 )  ) k  
k / 

x ~(q-2-2(k+l)) 

= 42~q-12) (A.6) 

which is (A. 1 ). 

APPENDIX B 

We are going to compute the nonzero eigenvalues of the synaptic ker- 
nel for clipped synapses, 

27 ) =  2 ~ ( _ 1 )  k q-n O(q-2(k+l)) 
k=o l=o l 

= 2  ~ ( _ 1 )  k q n O(q/2-(k+l)), n o d d  (B.1) 
k = O  l = 0  

To simplify the notation, instead of [Pl we write n. So 0 ~< n ~< q. The cases q 
odd and q even will be treated separately. We first turn to the case of 
odd q. 

1. If q is odd, the argument of the O function in (B.1) is never zero, 
so the O function simply imposes the constraint 

k +  l~< (q - 1)/2 (B.2) 
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on the range of the k and l summations. Therefore, (B.1) can be rewritten 

q--nmin{n'(q--1)/2--1}(1) (k) 
2(q)=2 E ~ q n ( _ 1 )  k (B.3) 

l=0  k=O 

All terms in (B.3) with �89 vanish, since the sum over k gives 
zero. For the remaining terms we also can perform the sum over k and 
get (28) 

n - 1  )Jq)=21~=~(q-n)(-1)(q-1)/2 l / (�89 1) - - / )  (B.4) 

where the second binomial coefficient in (B.4) is zero whenever �89 1 ) -  l 
exceeds n - 1 or l exceeds l(q _ 1 ). If we put 7"= �89 - 1 ) - l, (B.4) gives 

n--1 ( -1~( q-n 
2 (q) ~--- 2 ~ (-- 1) 7 n l~<n~<~(q+ 1 ) 1  (B.5) 

7=o \ 7 Jk�89 
while a comparison of (B.4) and (B.5) yields 

.~(q) _ ( _  1)(q 1)/2 ) (q) �89 1)<n~<q (B.6) - -  ~q+ 1 n~ 

This completes the discussion of the case where q is odd. 

2. If q is even, then 

1 if k+l<~�89 
O(q/2-(k+l))= 1/2 if k + l = � 8 9  (B.7) 

Thus extra boundary terms occur in 
argument of the O function vanishes. With (B.7), Eq. (B.1) gives 

J~(n q ) =  ~ (--1)k(?l)(q-n) 
k=0 k � 8 9  

+ 2  Z Y'. q n ( _ 1 )  k 
/=0 k=0  

the evaluation of (B.1) when the 

(B.8) 

The first sum in (B.8) comes from the boundary terms, the second from the 
terms where k+l~�89 In the second sum, the same manipulations 
can be performed as in (B.3)-(B.5). This gives 

k(n)(q--n) 
~ ( q ) =  ( - - 1 )  k �89 

k=O 

+ 2  2 ( - 1 )  7 n 1 
7=0 �89 _ , 1 <<.n<~q/2 (B.9) 

822/'50/1-2-17 
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We now use the recursion relation (A.3) for (~) in the first sum of (B.9) to 
get 

2(#) = 
n-1 ( l ) ( q - k )  ) k ( k - - l ) ( q - - n  ~ E ( - -1 )  k n ;  J \ � 8 9  + ~ ( - -1  

=o 1 J \ � 8 9  

+ 2  ~ ( - 1 )  7 n 1 q - n  
r=o � 8 9  ' l < . n < . q / 2  (B.10) 

The second sum in (B.10) is - 1 / 2  times the third, so that we end up with 
(renaming 7"__, k) 

~'(q)= ~ ( - -1)k  k q - k  + 
~=o ( q - 2 ) - k  

( _ 1 )  k n 1 q l<~n<~q/2 (B.11) 
k=0 �89 )' 

In the last step we have used (A.3) again. As in case 1, one obtains mirror  
terms of  the form 

,~(q)=(--1) q/2](q) �89 (B.12) "~q+2--n~ 
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